新科学想法 文献管理 浏览文献

有读书笔记Quantum de Finetti theorem in phase-space representation

beimu1009 添加于 2009-7-29 21:18 | 1229 次阅读 | 0 个评论
  •  作 者

    Leverrier A, Cerf NJ
  •  摘 要

    The quantum versions of de Finetti's theorem derived so far express the convergence of n-partite symmetric states, i.e., states that are invariant under permutations of their n parties, toward probabilistic mixtures of independent and identically distributed (IID) states of the form n. Unfortunately, these theorems only hold in finite-dimensional Hilbert spaces, and their direct generalization to infinite-dimensional Hilbert spaces is known to fail. Here, we address this problem by considering invariance under orthogonal transformations in phase space instead of permutations in state space, which leads to a quantum de Finetti theorem particularly relevant to continuous-variable systems. Specifically, an n-mode bosonic state that is invariant with respect to this continuous symmetry in phase space is proven to converge toward a probabilistic mixture of IID Gaussian states (actually, n identical thermal states). ©2009 The American Physical Society
  •  详细资料

    • 文献种类:期刊
    • 期刊名称: Physical Review A
    • 期刊缩写: Phys. Rev. A
    • 期卷页: 2009  80 1
    • ISBN: 1050-2947
  •  标 签

  • 相关链接 DOI URL 

  •  beimu1009 的文献笔记  订阅

    de Finetti theorem? What's this?

管理选项: 导出文献

评论(0 人)

facelist doodle 涂鸦板

Copyright;  © 新科学想法 2016-2017   浙公网安备 33010202000686号   ( 浙ICP备09035230号-1 )