We analyze the low temperature properties of a system of classical Heisenberg spins on a hexagonal lattice with Kitaev couplings. For a lattice of 2N sites with periodic boundary conditions, the ground states form an (N+1) dimensional manifold. We show that the ensemble of ground states is equivalent to that of a solid-on-solid model with continuously variable heights and nearest neighbor interactions, at a finite temperature. For temperature T tending to zero, all ground states have equal weight, and there is no order by disorder in this model. We argue that the bond-energy bond-energy correlations at distance R decay as 1/R2 at zero temperature. This is verified by Monte Carlo simulations. We also discuss the relation to the quantum spin-S Kitaev model for large S, and obtain lower and upper bounds on the ground-state energy of the quantum model.