新科学想法 文献管理 浏览文献

Four-dimensional address topology for circuits with stacked multilayer crossbar arrays

clj2005 添加于 2010-10-20 15:51 | 2172 次阅读 | 0 个评论
  •  作 者

    Strukov DB, Williams RS
  •  摘 要

    We present a topological framework that provides a simple yet powerful electronic circuit architecture for constructing and using multilayer crossbar arrays, allowing a significantly increased integration density of memristive crosspoint devices beyond the scaling limits of lateral feature sizes. The truly remarkable feature of such circuits, which is an extension of the CMOL (Cmos + MOLecular-scale devices) concept for an area-like interface to a three-dimensional system, is that a large-feature-size complimentary metal-oxide-semiconductor (CMOS) substrate can provide high-density interconnects to multiple crossbar layers through a single set of vertical vias. The physical locations of the memristive devices are mapped to a four-dimensional logical address space such that unique access from the CMOS substrate is provided to every device in a stacked array of crossbars. This hybrid architecture is compatible with digital memories, field-programmable gate arrays, and biologically inspired adaptive networks and with state-of-the-art integrated circuit foundries.
  •  详细资料

    • 文献种类:期刊
    • 期刊名称: Proceedings of the National Academy of Sciences
    • 期刊缩写: Proceedings of the National Academy of Sciences
    • 期卷页: 2009  106 48 20155-20158
    • ISBN: 0027-8424
  •  标 签

  • 相关链接 DOI URL 

管理选项: 导出文献

评论(0 人)

facelist doodle 涂鸦板

Copyright;  © 新科学想法 2016-2017   浙公网安备 33010202000686号   ( 浙ICP备09035230号-1 )