Koch M, Sames C, Kubanek A, Apel M, Balbach M, Ourjoumtsev A, Pinkse P, Rempe G
摘 要
We demonstrate feedback cooling of the motion of a single rubidium atom trapped in a high-finesse optical resonator to a temperature of about 160 μK. Time-dependent transmission and intensity-correlation measurements prove the reduction of the atomic position uncertainty. The feedback increases the 1/e storage time into the 1 s regime, 30 times longer than without feedback. Feedback cooling therefore rivals state-of-the-art laser cooling, but with the advantages that it requires less optical access and exhibits less optical pumping.