新科学想法 文献管理 浏览文献

有读书笔记Multiple Stable Periodic Oscillations in a Mathematical Model of CTL Response to HTLV-I Infection

biomath 添加于 2010-12-5 18:28 | 3117 次阅读 | 0 个评论
  •  作 者

    Li MY, Shu H
  •  摘 要

    Stable periodic oscillations have been shown to exist in mathematical models for the CTL response to HTLV-I infection. These periodic oscillations can be the result of mitosis of infected target CD4(+) cells, of a general form of response function, or of time delays in the CTL response. In this study, we show through a simple mathematical model that time delays in the CTL response process to HTLV-I infection can lead to the coexistence of multiple stable periodic solutions, which differ in amplitude and period, with their own basins of attraction. Our results imply that the dynamic interactions between the CTL immune response and HTLV-I infection are very complex, and that multi-stability in CTL response dynamics can exist in the form of coexisting stable oscillations instead of stable equilibria. Biologically, our findings imply that different routes or initial dosages of the viral infection may lead to quantitatively and qualitatively different outcomes.
  •  详细资料

    • 文献种类:期刊
    • 期刊名称: Bulletin of Mathematical Biology
    • 期刊缩写: Bull Math Biol
    • 期卷页: 2010
    • 地址: Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P.R. China, mli@math.ualberta.ca
    • ISBN: 0092-8240
    • 备注:PMID:20976566
  • 相关链接 DOI URL 

  •  biomath 的文献笔记  订阅

管理选项: 导出文献

评论(0 人)

facelist doodle 涂鸦板

Copyright;  © 新科学想法 2016-2017   浙公网安备 33010202000686号   ( 浙ICP备09035230号-1 )