新科学想法 文献管理 浏览文献

Least squares algorithms for constant acceleration target tracking

sycljl 添加于 2010-3-17 12:23 | 1821 次阅读 | 0 个评论
  •  作 者

    Dogancay K
  •  摘 要

    A unified treatment of several least squares (LS) algorithms is presented for bearings-only tracking of a target moving at constant acceleration. The close link between the maximum likelihood (ML) estimator and other nonlinear and "linearized" LS algorithms is explored under the assumption of Gaussian bearing noise. In this context, a new asymptotically unbiased closed-form instrumental variables (IV) algorithm is derived. Reduced-bias total least squares (TLS) and constrained TLS (CTLS) algorithms are developed. The equivalence of the ML algorithm to the structured TLS (STLS) algorithm is established. Simulation examples are provided to demonstrate the improved performance of the IV and TLS estimators vis-a-vis the pseudolinear estimator.
  •  详细资料

    • 文献种类:会议
    • 会议: 2003 International Conference on Radar
    • 期卷页: 566-571
    • 出版社: IEEE
    • 位置: Adelaide, SA, Australia
    • 日期: -
    • ISBN: 0-7803-7870-9
  •  标 签

    T1 
  • 相关链接 DOI URL 

管理选项: 导出文献

评论(0 人)

facelist doodle 涂鸦板

Copyright;  © 新科学想法 2016-2017   浙公网安备 33010202000686号   ( 浙ICP备09035230号-1 )