新科学想法 文献管理 浏览文献

有读书笔记Latent Dirichlet Allocation

3 xnature 添加于 2010-3-29 23:30 | 1924 次阅读 | 1 个评论
  •  作 者

    Blei DM, Ng AY, Jordan MI, Lafferty J
  •  摘 要

    We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.
  •  详细资料

    • 文献种类:期刊
    • 期刊名称: Journal of Machine Learning Research
    • 期刊缩写: Journal of Machine Learning Research
    • 期卷页: 2003  3 4-5 993-1022
    • ISBN: 1532-4435
  •  标 签

  • 相关链接 DOI URL 

  •  xnature 的文献笔记  订阅

    经典

管理选项: 导出文献

评论(1 人)

facelist doodle 涂鸦板

1人推荐

2 人收藏

该用户的其他文献

Copyright;  © 新科学想法 2016-2017   浙公网安备 33010202000686号   ( 浙ICP备09035230号-1 )