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This is a brief announcement of our recent proof of global existence
and rapid decay to equilibrium of classical solutions to the Boltz-
mann equation without any angular cutoff, that is, for long-range
interactions. We consider perturbations of the Maxwellian equilib-
rium states and include the physical cross-sections arising from an
inverse-power intermolecular potential r−ðp−1Þ with p > 2, andmore
generally. We present here a mathematical framework for unique
global in time solutions for all of these potentials. We consider it
remarkable that this equation, derived by Boltzmann (1) in 1872
and Maxwell (2) in 1867, grants a basic example where a range
of geometric fractional derivatives occur in a physical model of
the natural world. Our methods provide a new understanding
of the effects due to grazing collisions.
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The Boltzmann equation (1) and its corresponding H-Theorem
were derived by Ludwig Boltzmann in 1872. It has since be-

come a cornerstone of statistical physics and is widely believed to
accurately predict the dynamical behavior of a dilute gas. The
Boltzmann equation can be written as

∂F
∂t

þ v · ∇xF ¼ QðF; FÞ: [1]

The unknown Fðt; x; vÞ is a nonnegative function. For each time
t ≥ 0, Fðt; ·; ·Þ represents the density function of particles in the
phase space; F may be more accurately called the empirical mea-
sure. The Boltzmann collision operator acts only on the velocity
variables v and is local in ðt; xÞ as

QðF; FÞðvÞ ¼
Z
R3

dv�

Z
S2
dσBðjv − v�j; σÞ½F0�F0 − F�F�:

We are using the standard shorthand F ¼ FðvÞ, F� ¼ Fðv�Þ,
F0 ¼ Fðv0Þ, and F0� ¼ Fðv0�Þ. In this expression, v0, v0� and v, v�
are the velocities of a pair of particles before and after collision
that result from parametrizing over the sphere S2 the set of solu-
tions to the physical law of elastic collisions:

vþ v� ¼ v0 þ v0� jvj2 þ jv�j2 ¼ jv0j2 þ jv0�j2:
The Boltzmann collision kernel Bðjv − v�j; σÞ for a monatomic gas
is, on physical grounds, a nonnegative function that only depends
on the relative velocity jv − v�j and on the deviation angle θ through
cos θ ¼ hk; σi where k ¼ ðv − v�Þ∕jv − v�j and h·; ·i is the usual
scalar product in R3.

Earlier, James Clerk Maxwell (2) in 1867 showed that the col-
lision kernels B can be computed for particles interacting accord-
ing to a spherical intermolecular repulsive potential:

ϕðrÞ ¼ r−ðp−1Þ; p ∈ ð2;þ∞Þ: [2]

We consider it to be a remarkable fact that this fundamental
physical model, derived by Maxwell and Boltzmann in the middle
of the 19th century involves geometric, nonlocal fractional differ-
entiation effects, as we will explain in more detail below. The rig-
orous mathematical study of fractional Laplacians on manifolds
did not begin until much later and even now there is still much to

know about such operators and their role in the theory of linear
and nonlinear partial differential equations.

A profound prediction of Boltzmann’s equation is the Boltz-
mann H-Theorem*, which says that solutions satisfy

d
dt
HðFÞ ¼ −

d
dt

Z
T3
x

dx
Z
R3
v

dvF logF ≥ 0.

This H-functional is therefore (formally, ignoring regularity and
integrability issues) increasing and all of its maximizers are given
by the Maxwellian equilibrium states:

μðvÞ ¼ ð2πÞ−3∕2e−jvj2∕2:

(This is the simplest representative of the five-parameter family
of Maxwellian equilibrium states.) Boltzmann’s H-Theorem de-
monstrates the second law of thermodynamics, which demands
that the physical entropy of an isolated system does not decrease
over time. It also demonstrates that Boltzmann’s equation is
irreversible. For statistical physics, this has been considered to
be among Boltzmann’s most important contributions.

Boltzmann’s “proof” (1), however, and subsequent proofs of
related results even up to the modern day cannot be considered
completely satisfactory. The key problem is still this so-called
“slight analytical difficulty,”which means that we do not generally
know whether or not the regularity and integrability that is
required to prove the H-Theorem is propagated by the Boltz-
mann equation [1]. Although there are many useful and impor-
tant fundamental theories for the Boltzmann equation, none, so
far as we are aware, can be said to completely and rigorously
justify the H-Theorem for the inverse-power law intermolecular
potentials [2] with 2 < p < ∞. We refer to refs. 1, 3–7, and the
references therein in this regard.

In this work, we explain our proof of global existence of unique
strong solutions to the Boltzmann equation [1] for the full range
of intermolecular potentials [2]. Our solutions decay rapidly in
time to theMaxwellian equilibrium states μðvÞ that is the essential
prediction of the Boltzmann H-Theorem. The initial data we con-
sider are perturbations of equilibrium. Specifically, we study the
linearization of [1] around the Maxwellian equilibrium state

Fðt; x; vÞ ¼ μðvÞ þ
ffiffiffiffiffiffiffiffiffi
μðvÞ

p
f ðt; x; vÞ: [3]

Here, we consider ðt; x; vÞ ∈ ½0;∞Þ × T3
x × R3

x . We suppose
without restriction that the mass, momentum, and energy conser-
vation laws for f ðt; x; vÞ hold for all t ≥ 0 as
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Z
T3
x

dx
Z
R3
v

dv
1

v
jvj2

0
@

1
A ffiffiffiffiffiffiffiffiffi

μðvÞ
p

f ðt; x; vÞ ¼ 0. [4]

This condition should be satisfied initially, and then will continue
to be satisfied for a suitably strong solution. The first statement of
our main theorem is as follows:

Theorem 1. Consider the Boltzmann equation [1] for a spherical
intermolecular repulsive potential with p > 2. Suppose the initial
condition f 0 ¼ f 0ðx; vÞ in [3] satisfies [4] and belongs to a suitable
Hilbert space. If this initial state f 0 is sufficiently close to μðvÞ
then there exists a unique global in time solution to the Boltz-
mann equation [1] of the form [3] that decays exponentially fast
to μðvÞ when p ≥ 3. If p ∈ ð2; 3Þ then we prove decay to equilib-
rium with any polynomial rate. We also have positivity, i.e.,
F ¼ μþ ffiffiffi

μ
p

f ≥ 0 if this is so initially.
This coarsely stated main Theorem 1 is explained fully in its

precise mathematical form in Theorem 2 and Theorem 3 below
after the following developments.

Results and Discussion
Historical Background. As has long been known, the principal dif-
ficulty in establishing well-posedness results for the Boltzmann
equation is that the singularity of the collision kernel
Bðjv − v�j; σÞ in the variable σ ∈ S2 is not locally integrable. In
particular, this indicates that the cancellation structure of the dif-
ference F0�F0 − F�F appearing in the definition of the collision
operator Q is crucial even at the level of definitions.

To avoid the inherent analytical difficulty of these strong sin-
gularities, Harold Grad proposed (9) in 1963 a modification of
the collision operator Q by introducing a bounded “cutoff” near
the singularity that removes these effects. Less stringent L1ðS2Þ
cutoffs that have similar results, have also been used as early as
1954 by Morgenstern (10). These types of truncations have since
been widely accepted in the mathematical literature and have
now influenced several decades of progress on the Boltzmann
equation. However, for the intermolecular repulsive potentials
previously discussed, the cutoff theory only applies physically
in the limit when p → ∞ represented by Hard-Sphere particles.

Here, we give a brief collection of some breakthroughs in the
context of the cutoff Boltzmann equation. In 1933, Carleman (11)
proved existence and uniqueness of the spatially homogeneous
problem with radial initial data. For the spatially dependent the-
ories, it was Ukai (12) in 1974 who proved the existence of global
classical solutions with close to equilibrium initial data. Ten years
later, Illner–Shinbrot (13) found unique global mild solutions
with near vacuum data. Then in 1989, the work of DiPerna–Lions
(3) established global renormalized weak solutions for initial data
without a size restriction. We also mention recent methods intro-
duced in the linearized regime by Guo (14, 15) in 2003 and
Liu-Yang-Yu (16) in 2004. We do use the space-time estimates
from ref. 14 in our proof. We refer to ref. 5 for a long review
of mathematical Kinetic theory.

The Grad angular cutoff assumption was originally believed to
not change the essential nature of solutions to the equation. His-
torically, it has been furthermore argued that, physically, the im-
portant properties of the Boltzmann equation are not particularly
sensitive to the dependence of the collision kernel upon the de-
viation angle: θ (5).

There is, however, a long history of mathematical results at the
mesoscopic level of Boltzmann, which illustrate that, instead, so-
lutions of the Boltzmann equation have strong dependence on
the angular singularity either locally in time, or in the context
of renormalized weak solutions or for initial data without any
spatial dependence; see refs. 5, 7, 17–20, and the references
therein. In particular, the large data theory of global renorma-

lized weak solutions, due to DiPerna-Lions (3), has been estab-
lished for the Boltzmann equation without cutoff in the paper by
Alexandre–Villani (7) from 2002 if one adds to the equation a
nonnegative defect measure that is at the present time not known
to vanish. Our results additionally show that, for all of the inter-
molecular repulsive potentials [2], our solutions exhibit a gain of
velocity regularity globally in time.

It was shown by Boudin–Desvillettes (21) in 2000 that under
the angular cutoff assumption solutions near vacuum have the
same regularity in a Sobolev space as the initial data. On the other
hand, when the physical effects of the angular singularity are not
cutoff the Boltzmann equation is well-known to experience
smoothing effects. These results go back to Lions (22) and
Desvillettes (23) and have seen substantial developments.
Recently, Chen–Desvillettes–He (24) and also Alexandre–
Morimoto–Ukai–Xu–Yang (20) have developed independent
machinery to study these general smoothing effects for kinetic
equations. These results illustrate that the Boltzmann equation
with angular cutoff is in some respects very different from the
one without any angular cutoff.

Moreover, the Boltzmann collision operator without cutoff has
been widely conjectured to “behave” essentially as the fractional
flat diffusion −ð−ΔvÞs. This can be expressed as

F ↦ Qðg; FÞ ∼ −ð−ΔvÞsF þ l:o:t:

Above “l.o.t.” indicates that the remaining terms will be lower
order. The original mathematical intuition for this conjecture
goes back to Carlo Cercignani (25) in 1969 over forty years
ago (5). This conjecture has been shown to be correct in terms of
the smoothing effects induced by the Boltzmann collision opera-
tor as has been proven, for instance, in refs. 20 and 22–24. Even
so, our research proves at the linearized level that the essential
behavior of the collision operator is not quite a flat fractional dif-
fusion. Instead, there are directionally dependent velocity weights
that go to infinity as velocity goes to infinity that are crucially in-
tertwined with the fractional diffusive effects. We are able to
characterize this interconnection “geometrically.” In fact, the lin-
ear behavior is exactly that of a fundamentally nonisotropic frac-
tional Laplacian with the geometry of a “lifted” paraboloid in R4.
We illustrate entropy production estimates in the last section that
demonstrates the same nonisotropic fractional diffusive effects
for the Boltzmann “entropy production functional” in the fully
nonlinear context.

Formulation. The linearization [3] of the Boltzmann equation [1]
grants an equation for the perturbation f ðt; x; vÞ as

∂tf þ v · ∇xf þ Lðf Þ ¼ Γðf ; f Þ; f ð0; x; vÞ ¼ f 0ðx; vÞ; [5]

where the linearized Boltzmann operator L is given by

LðgÞ¼def − μ−1∕2Qðμ; ffiffiffi
μ

p
gÞ − μ−1∕2Qð ffiffiffi

μ
p

g; μÞ

¼
Z
R3

dv�

Z
S2
dσBðjv − v�j; cos θÞ

× ½g�M þ gM� − g0�M 0 − g0M 0��M�;

and the bilinear operator Γ takes the form

Γðg; hÞ¼defμ−1∕2Qð ffiffiffi
μ

p
g;

ffiffiffi
μ

p
hÞ ¼

Z
R3

dv�

Z
S2
dσBM�ðg0�h0 − g�hÞ:

In both definitions, MðvÞ¼def ffiffiffi
μ

p ¼ ð2πÞ−3∕4e−jvj2∕4, and we use the
parametrization for collisional variables as
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v0 ¼ vþ v�
2

þ jv − v�j
2

σ; v0� ¼
vþ v�
2

−
jv − v�j

2
σ; σ ∈ S2:

We further decompose L ¼ N þ K . Here,N is the “norm part” of
the linearized operator and K will be seen as the “compact part.”
The norm part is then written as

Ng¼def − ΓðM; gÞ − νK ðvÞg ¼ −
Z
R3

dv�

Z
S2
dσBðg0 − gÞM 0�M�

þ νðvÞgðvÞ;

where the weight νK ðvÞ is suitably chosen (depending on various
technical considerations) so that νðvÞ is nonnegative and νK ðvÞ ≪
νðvÞ as jvj → ∞. We will use h·; ·i to denote the standard L2ðR3

vÞ
inner product. With this notation, the norm piece may easily be
shown to satisfy the following identity:

hNg; gi ¼ 1

2

Z
R3

dv
Z
R3

dv�

Z
S2
dσBðg0 − gÞ2M 0�M�

þ
Z
R3

dvνðvÞjgðvÞj2:

We also record here the definition of the “compact part” K :

Kg¼defνKðvÞg − Γðg;MÞ ¼ νK ðvÞg

−
Z
R3

dv�

Z
S2
dσBM�ðg0�M 0 − g�MÞ:

This is our main splitting of the linearized operator.
As will be seen, our solution to the problem at hand rests

heavily on our introduction of the following weighted geometric
fractional Sobolev space:

Ns;γ¼deffg ∈ L2ðR3
vÞ∶jgjNs;γ < ∞g;

where the norm jgj2Ns;γ is given by the formula

Z
R3

dv
Z
R3

dv0
ðg0 − gÞ2
dðv; v0Þ3þ2s ðhvihv0iÞ

γþ2sþ1
2 1dðv;v0 Þ≤1 þ jgj2L2

γþ2s
:

In this formula, hvi¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jvj2

p
and the weighted-L2 space,

jgj2L2
γþ2s

¼def
Z
R3

dvhviγþ2sjgðvÞj2;

are as usual. The metric term dðv; v0Þ is given by

dðv; v0Þ¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv − v0j2 þ

�
1

2
jvj2 − 1

2
jv0j2

�
2

s
:

The inclusion of the quadratic difference jvj2 − jv0j2 is an essential
part of the linearized Boltzmann collision operator; it is not a
lower order term. In particular, if for every v ∈ R3 one defines
v ¼defðv; 1

2
jvj2Þ ∈ R4, then dðv; v0Þ equals the distance in R4 between

v and v0. Thus, the presence of this term indicates that the under-
lying geometry is that of a paraboloid rather than flat space. In
fact our Ns;γ norm is sharp for the linearized Boltzmann collision
operator, in particular jgj2Ns;γ and hNg; gi are equivalent.

To state our main result precisely, we must first give a few ad-
ditional details about the nature of the collision kernel B. The
assumptions made below and in refs. 26 and 27 are as follows:

• Bðjv − v�j; σÞ takes product form in its arguments as

Bðjv − v�j; σÞ ¼ Φðjv − v�jÞbðcos θÞ:

In general, both b and Φ are nonnegative functions.
• For fixed s ∈ ð0; 1Þ, cb > 0, the angular factor satisfies

cb
θ1þ2s ≤ sin θbðcos θÞ ≤ 1

cbθ1þ2s ; ∀ θ ∈
�
0;
π

2

�
:

• The kinetic factor z ↦ ΦðjzjÞ satisfies for some CΦ > 0

Φðjv − v�jÞ ¼ CΦjv − v�jγ ; γ > −2s − 1.

These conditions hold for all of the collision kernels that arise
from the intermolecular potential [2] with p > 2.

We will work in the Hilbert spaces L2
vHK

x ðT3
x × R3

vÞ where

‖f‖2
L2
vHK

x
¼def ∑

jαj≤K

Z
R3
v

dv
Z
T3
x

dxj∂αx f ðx; vÞj2:

This is the Sobolev space with ∂αx ¼ ∂α1x1 ∂
α2
x2 ∂

α3
x3 . We have

Theorem 2. Suppose γ þ 2s ≥ 0 and fix K ≥ 3. Choose the initial
state f 0 ¼ f 0ðx; vÞ ∈ L2

vHK
x ðT3

x × R3
vÞ in [3] that satisfies [4]. There

is an η0 > 0 such that if ‖f 0‖L2
vHK

x
≤ η0 then there exists a unique

global strong solution to the Boltzmann equation [1] in the form
[3] that satisfies

f ðt; x; vÞ ∈ L∞
t L

2
vHK

x ∩ L2
t N

s;γHK
x ðð0;∞Þ × T3

x × R3
vÞ:

With λ > 0, we have exponential decay to equilibrium:

‖f ðtÞ‖L2
vHK

x
≤ Ce−λt‖f 0‖L2

vHK
x
:

We also have positivity; F ¼ μþ ffiffiffi
μ

p
f ≥ 0 if it is so initially.

The theorem above applies to the case when there is a spectral
gap (28). In the weaker case of the very soft potentials γ þ 2s < 0,
our estimates constructively prove that there is no spectral gap.
This resolves a conjecture in (28). To handle this second case in
which there is no spectral gap, we will work in the Hilbert spaces
HK

ℓ ðT3
x × R3

vÞ where

‖f‖2
HK

ℓ

¼def ∑
jαjþjβj≤K

Z
R3
v

dv
Z
T3
x

dxwℓ−jβjðvÞj∂αβf ðx; vÞj2:

This is a standard Sobolev space. The weight corresponds to

wðvÞ ¼ hvi−γ−2s:
Furthermore, we will consider the weighted nonisotropic space
Ns;γ

ℓ;K with norm, ∥f∥2
N , given by

∑
jαjþjβj≤K

Z
T3
x

dx
Z
R3
v

dv
�
hviγþ2swℓ−jβjðvÞj∂αβf ðx; vÞj2

þ hviγþ2sþ1wℓ−jβjðvÞ
Z
R3

dv0
ð∂αβf 0 − ∂αβf Þ2
dðv; v0Þ3þ2s 1dðv;v0Þ≤1

�
:

In both terms we are summing over jαj þ jβj ≤ K . Our multi-
index notation for derivatives is ∂αβ ¼ ∂α1x1 ∂

α2
x2 ∂

α3
x3 ∂

β1
v1 ∂

β2
v2 ∂

β3
v3 . Then

we have the following theorem for the soft-potentials:

Theorem 3. Suppose γ þ 2s ∈ ð−1; 0Þ. Fix K ≥ 5 and ℓ ≥ 0. Choose
the initial state f 0ðx; vÞ ∈ HK

ℓ ðT3
x × R3

vÞ in [3] that satisfies [4].
There is an η0 > 0 such that if ‖f 0‖HK

ℓ
≤ η0 then there exists a
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unique global classical solution to the Boltzmann equation [1] in
the form [3] that satisfies

f ðt; x; vÞ ∈ L∞
t H

K
ℓ ∩ L2

t N
s;γ
ℓ;Kðð0;∞Þ × T3

x × R3
vÞ:

We have polynomial decay to any order m ≥ 0:

‖f ðtÞ‖HK
ℓ
≤ Cmð1þ tÞ−m‖f 0‖HK

ℓþm
:

We also have positivity F ¼ μþ ffiffiffi
μ

p
f ≥ 0 if it is so initially.

In the context of the intermolecular potential [2], we give the
full proof specifically in case of potentials p > 3 in ref. 26 and
complete the rest of the cases, including 2 < p ≤ 3 in ref. 27.
In the following we will explain our proof from ref. 26 because
this already encapsulates the all of the essential mathematical dif-
ficulties associated with the full range of angular singularities
in bðcos θÞ.

Main Estimates. We will exposit our main estimates in the context
L2ðR3

vÞ because this space already includes all of the singular geo-
metric fractional derivative estimates on the velocity variables. To
prove Theorem 2 the needed inequalities are of the form

jhΓðg; hÞ; f ij≲ jgjL2 jhjNs;γ jf jNs;γ þ l:o:t: [7]

hLg; gi≳ jgj2Ns;γ − l:o:t:; [8]

where L2 denotes the L2ðR3
vÞ norm. This proves to be a genuinely

difficult task because the operators Γ and L are intimately con-
nected and, among other consequences, this means that if both of
these desired inequalities are simultaneously true then Hilbert
space Ns;γ satisfying these inequalities is unique. So the task is
threefold: before proving each of the two fundamentally impor-
tant inequalities the unique candidate for Ns;γ must be identified.
The precise version of the upper bound inequality [7] proved in
ref. 26 is exactly

jhΓðg; hÞ; f ij≲ jgjL2 jhjNs;γ jf jNs;γ

þ jgjL2
γþ2s

½jhjL2 jf jNs;γ þ jhjNs;γ jf jL2 �; [9]

and the coercive inequality [8] is supplied by

hNg; gi ≈ jgj2Ns;γ

jhKg; gij ≤ ηjgj2L2
γþ2s

þ Cηjgj2L2 ; [10]

where η > 0 is any fixed, small number and Cη > 0.

Identification of the Space Ns;γ. As already mentioned, it turns out
that the candidate Hilbert space Ns;γ is a weighted, anisotropic
Sobolev space. To be precise, we consider the metric on R3 that
is induced by the embedding v ↦ ðv; 1

2
jvj2Þ ∈ R4, i.e., we regard

R3 as a particular choice of parametrization of the paraboloid
ðv; 1

2
jvj2Þ ⊂ R4. If ΔP is taken to be the metric Laplacian on this

paraboloid, then the appropriate Hilbert space to consider is gi-
ven by

jgj2Ns;γ ≈
Z
R3

dvhviγþ2sjðI − ΔPÞs2gj2;

where the integral dv is just the usual Lebesgue measure on R3.
Rather than work directly with the operator ðI − ΔPÞs2, we find it
more convenient to use a geometric Littlewood–Paley-type de-
composition inspired by the work of Stein (29) and Klainerman–
Rodnianski (30). We do not, however, take a semigroup approach

to the actual construction of our Littlewood–Paley projections as
Stein did. Instead, we use the embedding of the paraboloid in R4

to our advantage. If dμ is the Radon measure on R4 correspond-
ing to surface measure on the paraboloid, our approach is to take
a renormalized version of the four-dimensional, Euclidean Little-
wood–Paley decomposition of the measure gdμ as our nonisotro-
pic, three-dimensional, Littlewood–Paley-type decomposition for
the function g. Among other benefits, this approach automatically
allows for a natural extension of the Littlewood–Paley projections
Pjg and Qjg as smooth functions defined on R4 in a neighborhood
of the paraboloid. This allows us to avoid a direct discussion of
the induced metric on R3 by phrasing our results in terms of the
projections Pjg, Qjg, and various Euclidean derivatives of these
functions in R4 instead of R3. Another advantage is that we
are able to obtain the appropriate Littlewood–Paley characteri-
zation of the space Ns;γ by a pointwise comparison of the corre-
sponding Littlewood–Paley square function to the integral
expression for the norm.

The Upper Bound Inequality. The proof of the estimate [9] is based
on a dyadic decomposition of the singularity of the collision ker-
nel B as well as a Littlewood–Paley-type decomposition of the
functions h and f . The end result is that one is led to consider
a triple sum

jhΓðg; hÞ; f ij ≤ C ∑
∞

k¼−∞
∑
∞

j1¼0
∑
∞

j2¼0

jhΓkðg; Qj1h;Qj2 f ij:

Here, we have already performed an appropriate dyadic decom-
position of the singularity in each Γk, each piece of the decom-
position has the kernel Bkðjv − v�j; cos θÞ. Control over the sum of
the pieces rests on two important observations:

1. When considering terms for which 2−k is large relative to 2−j1

and 2−j2 , a favorable estimate holds simply because the sup-
port of Bkðjv − v�j; cos θÞ is compact and bounded away from
the singularity at θ ¼ 0. This is the regime that may be thought
of as being far from the singularity.

2. When either 2−j1 or 2−j2 is large relative to 2−k, i.e., near the
singularity, an improvement may be made by exploiting the
inherent cancellation structure of Γk. The cost that must be
paid to use this cancellation is that derivatives must fall on
either Qj1h or Qj2 f . In this case, it turns out that it is always
possible to arrange for the derivatives to be placed on the func-
tion of our choice. Placing the derivatives on the function of
largest scale (the function whose index is least) grants extra
decay that allows one to sum all the terms by comparison
to a geometric series.

This style of decomposition, of course, has a long history and
generally follows the standard procedures of harmonic analysis.
The essential unique feature in the above argument for the Boltz-
mann collision operator is that we do not measure cancellations
in the usual isotropic way; cancellations are measured instead by
using the metric on the paraboloid. It should be further noted
that our analysis allows us to essentially ignore the dependence
of Γðg; hÞ on the function g. This is a great advantage as it means
that one may think of the trilinear form hΓðg; hÞ; f i as a family of
bilinear forms in h and f parametrized by the function g. This
observation is essential because the fully trilinear form falls well
outside the scope of existing tools in harmonic analysis.

The Dual Formulation. A key point of significant technical impor-
tance in the proof of the upper bound inequality is that we must
be able to make estimates for hΓðg; hÞ; f i that exploit the intrinsic
cancellations at the cost of placing derivatives on any one of the
two functions h or f that we choose. If we were not forced to con-
sider fractional derivatives, a suitable tool would be integration-
by-parts. As it stands however, it is necessary to find two different
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yet analogous representations of the trilinear form hΓðg; hÞ; f i
that clearly relate cancellation to smoothness of h and f ,
respectively. It turns out that placing derivatives on f is fairly
straightforward to do. In particular, one may apply a standard
pre-post change of variables on the gain term Qþ to obtain
the representation

hΓðg; hÞ; f i ¼
Z
R3

dv
Z
R3

dv�

Z
S2
dσBg�hðM 0�f 0 −M�f Þ

(that is justified by approximation of B by a sequence of cutoff
kernels). Clearly, for each fixed g there is an operator Tg such
that hΓðg; hÞ; f i ¼ hTgf ; hi and, moreover, the formula above
can be used to write down an explicit formula for Tg. To place
derivatives on h, on the other hand, it is necessary to derive a
Carleman-type representation that involves only differences of
h0 and h, i.e., no differences of g or f . To that end, it is necessary
to compute what we call the “dual formulation,” because this
amounts to writing down a formula for T�

g . These computations
may be found in the appendix of ref. 26; the end result is that

hΓðg; hÞ; f i ¼
Z
R3

dv
Z
R3

dv�

Z
S2
dσBg�f 0

×
�
M 0�h −M�h0

jv0 − v�j3Φðv0 − v�Þ
jv − v�j3Φðv − v�Þ

�
:

An interesting consequence of this formula is that the gain term
Qþ is unchanged and only the loss term Q− differs in these two
formulas. These two formulas also demonstrate the essentially
straightforward dependence on g that we use to apply tradition-
ally bilinear methods to the trilinear form.

The Coercive Inequality.The key to proving [10], on the other hand,
is to show that

hNg; gi ≈ jgj2Ns;γ :

We prove an equivalent statement in terms of the Littlewood–
Paley-type projections. This analysis consists of two parts. The
first is a rewriting of the derivative part of the norm hNg; gi by
means of a Carleman-type representation as

hNg; gi ¼
Z
R3

dv
Z
R3

dv0Kðv; v0Þðg0 − gÞ2 þ
Z
R3

dvνðvÞjgðvÞj2;

for an appropriate function Kðv; v0Þ. As before, if we let dðv; v0Þ
denote the Euclidean distance in R4 between the points ðv; 1

2
jvj2Þ

and ðv0; 1
2
jv0j2Þ, a simple pointwise estimation of this function K

demonstrates that

Kðv; v0Þ≳ ðdðv; v0ÞÞ−3−2sðhvihv0iÞγþ2sþ1
2 ;

for a large set of pairs ðv; v0Þ, the exact description of which is
slightly complicated. The second part is to demonstrate that
the set of pairs for which this inequality holds is large enough
to conclude an integral version of this inequality, namely,

hNg; gi≳
Z
R3

dv
Z
R3

dv0ðhvihv0iÞγþ2sþ1
2

ðg0 − gÞ2
dðv; v0Þ3þ2s 1dðv;v0 Þ≤1:

This latter argument is accomplished by means of a partition
of unity and Fourier analysis, the key point being that the
expressions

Z
R3

dv
Z
R3

dv0ðg0 − gÞ2 Ωðv − v0Þ
jv − v0j3þ2s ;

are uniformly comparable for all g ∈ HsðR3Þ as Ω ranges over the
family of nonnegative, homogeneous functions of degree 0 for
which jΩjL1ðS2Þ ≳ 1 and jΩjL∞ðS2Þ ≲ 1.

Local Existence. We establish the relevant local existence theorem
by iteration taking f 0ðt; x; vÞ¼deff 0ðx; vÞ and defining f nþ1ðt; x; vÞ for
n ≥ 0 in terms of the linear equation

ð∂t þ v · ∇x þ NÞf nþ1 þ Kfn ¼ Γðf n; f nþ1Þ;

with initial data f nþ1ð0; x; vÞ ¼ f 0ðx; vÞ. This linear equation
admits smooth solutions for suitable smooth small initial data.
We define the “dissipation rate” as

Dðf ðtÞÞ¼def ∑
jαj≤K

Z
T3
x

dxj∂αx f ðt; xÞj2Ns;γ ;

and the total norm

Gðf ðtÞÞ¼def‖f ðtÞ‖2
L2
vH

K
x
þ
Z

t

0

dτDðf ðτÞÞ:

For appropriately small initial data f 0 ∈ L2
vHK

x , these are shown
to have uniformly bounded norm Gðf nðtÞÞ on some fixed time in-
terval independent of n. Passing to the limit gives local existence:

Theorem 4. (Local existence). For any sufficiently small M0 > 0;
there exists a time T� ¼ T�ðM0Þ > 0 and M1 > 0; such that if

‖f 0‖
2
L2
vHK

x
≤ M1;

then there is a unique solution f ðt; x; vÞ to [5] on ½0; T�Þ × T3
x × R3

v
such that

sup
0≤t≤T�

Gðf ðtÞÞ ≤ M0:

Furthermore, Gðf ðtÞÞ is continuous over ½0; T�Þ: Lastly, we
have positivity if F0ðx; vÞ ¼ μþ μ1∕2f 0 ≥ 0 then Fðt; x; vÞ ¼
μþ μ1∕2f ðt; x; vÞ ≥ 0.

Global Existence. To establish global existence, we exploit the
space-time macroscopic decomposition and nonlinear energy
method due to Guo (14). By Boltzmann’s H-theorem, the opera-
tor L is nonnegative and for every fixed ðt; xÞ the null space of L is
given by the five dimensional space

N¼defspanf ffiffiffi
μ

p
; v1

ffiffiffi
μ

p
; v2

ffiffiffi
μ

p
; v3

ffiffiffi
μ

p
; jvj2 ffiffiffi

μ
p g:

Denote the orthogonal projection from L2ðR3
vÞ onto the null

space N by P. The energy estimate we obtain is as follows.

Theroem 5. Given the initial data f 0 ∈ L2ðR3
v∶HKðT3

x ÞÞ, for
some K ≥ 3, which satisfies [4] initially and the assumptions of
Theorem 4. Consider the corresponding local solution, f ðt; x; vÞ,
to [5] that continues to satisfy [4]. There exists a small constant
M0 > 0 such that if

‖f ðtÞ‖2
L2
vH

K
x
≤ M0 [11]

then there are universal constants δ > 0 and C2 > 0 such that

DðfI−Pgf ðtÞÞ ≥ δDðPf ðtÞÞ − C2

dIðtÞ
dt

;
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where IðtÞ is the an appropriate “interaction functional” that is
comparable to the energy.

This is really a statement of the linearized H-Theorem. We
conclude in the usual way by defining

EðtÞ¼defðC1 þ 1Þ‖f ðtÞ‖2
L2
vHK

x
− C0IðtÞ;

for appropriate constants C1 and C0 (so that EðtÞ is equivalent to
‖f ðtÞ‖2

L2
vH

K
x
) and showing that

EðtÞ þ
~δ

2

Z
t

0

dτDðτÞ ≤ Eð0Þ

for a suitable positive constant ~δ, which proves that EðtÞ remains
bounded for all time.

Entropy Production. We conclude with the observation that the
nonisotropic nature of the linearized setting carries over to the
fully nonlinear situation with the same geometry, at least in some
broad cases. Precisely, the Boltzmann H-Theorem may be reex-
pressed as

dH
dt

ðtÞ ¼
Z
T3

dxDðFÞ ≥ 0;

where the nonnegative Entropy production functional is
defined by

DðFÞ ¼ −
Z
R3

QðF; FÞ logFdv

¼ 1

4

Z
R3

dv
Z
R3

dv�

Z
S2
dσBðv − v�; σÞðF0F0� − FF�Þ log

F0F0�
FF�

:

This entropy production functional is zero if and only if it is op-
erating on a Maxwellian equilibrium. This formally demonstrates
that Boltzmann’s equation defines an irreversible dynamics, and
predicts convergence to Maxwellian in large time.

Coercive isotropic entropy production estimates in the non
cutoff regime, such as (17), have found widespread utility. With
our methods and nonisotropic Sobolev space, the following en-
tropy production estimate may be established:

DðFÞ≳
Z
R3

dv
Z
R3

dv0hviγþ2sþ1
ð

ffiffiffiffiffi
F0p

−
ffiffiffiffi
F

p Þ2
dðv; v0Þ3þ2s 1dðv;v0Þ≤1 − l:o:t:

This estimate follows straightforwardly from our estimates in
ref. 26, Section 6 when combined with Eq. 29 from ref. 31 in
the particular case where the unknown functions satisfy
FðvÞ ≥ εe−cjvj2 for any given ε, c > 0. Remarkably, this is the same
semi-norm as in the linearized context, and it is a stronger non-
isotropic and nonlocal semi-norm than the one found in the local
smoothing estimate from ref. 17, stronger, that is, in terms of the
weight power multiplied on the order of differentiation.

Final Remark. After the completion of this present work, the
authors of ref. 32 sent us a preprint that proves a related global
existence result for similar perturbations of the Maxwellian equi-
librium states [3] in the whole space. Their result currently applies
to the case of Maxwell molecules and moderate angular singula-
rities. For the inverse power intermolecular potentials, this cor-
responds to the case p ¼ 5. Their methods of proof are
substantially different from our own.
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