新科学想法 学术文库 学术文献 浏览文献

有读书笔记有附件Sharp constant in Nash's inequality

yhhuang 添加于 2011-9-29 04:47 | 2398 次阅读 | 0 个评论
  •  作 者

    Carlen, Eric A., Loss, Michael
  •  摘 要

    From the text: "The Nash inequality states that (1) $$\Big(\int_{\bold R^n}|f(x)|^2\,d^nx\Big)^{1+2/n}\leq C_n\int_{\bold R^n}|\nabla f(x)|^2\,d^nx\Big(\int_{\bold R^n}|f(x)|\,d^nx\Big)^{4/n}$$ (∫Rn|f(x)|2dnx)1+2/n≤Cn∫Rn|∇f(x)|2dnx(∫Rn|f(x)|dnx)4/n for a constant $C_n$Cn depending only on $n$n. This inequality is a particular case of the Gagliardo-Nirenberg inequalities for which numerous applications have been found. In this note we compute the sharp constant in (1) and determine all of the cases of equality. A particularly striking feature of the result is that all of the extremals have compact support.''
  •  详细资料

    • 文献种类: Journal Article
    • 期刊名称: International Mathematics Research Notices
    • 期刊缩写: Internat. Math. Res. Notices
    • 期卷页: 1993  7 213-215
  • 学科领域 自然科学 » 数学

  •  标 签

  • 相关链接 DOI URL 

  •  附 件

    PDF附件Sharp constant in Nash's inequality 
  •  yhhuang 的文献笔记  订阅

    The interpolation between different norms:
    .
    With the assumption of the minimizer is obtained for radially decreasing function, choose a ball, whose radius is given by self-consistence conditions.
管理选项: 导出文献|

评论(0 人)

facelist doodle 涂鸦板

Copyright;  © 新科学想法 2016-2017   浙公网安备 33010202000686号   ( 浙ICP备09035230号-1 )