新科学想法 学术文库 学术文献 浏览文献

Deep learning and the renormalization group

zqyin 添加于 2014-12-18 10:17 | 1175 次阅读 | 0 个评论
  •  作 者

    Bény C
  •  摘 要

    Renormalization group (RG) methods, which model the way in which the effective behavior of a system depends on the scale at which it is observed, are key to modern condensed-matter theory and particle physics. We compare the ideas behind the RG on the one hand and deep machine learning on the other, where depth and scale play a similar role. In order to illustrate this connection, we review a recent numerical method based on the RG---the multiscale entanglement renormalization ansatz (MERA)---and show how it can be converted into a learning algorithm based on a generative hierarchical Bayesian network model. Under the assumption---common in physics---that the distribution to be learned is fully characterized by local correlations, this algorithm involves only explicit evaluation of probabilities, hence doing away with sampling.
  •  详细资料

    • 关键词: quant-ph
    • 文献种类: Manual Script
    • 期卷页: 2013
    • 日期: 2013-3-14
    • 发布方式: arXiv e-prints
    • 备注:arXiv:1301.3124v4
  • 学科领域 自然科学 » 物理学

  • 相关链接  URL 

  •  zqyin 的文献笔记  订阅


管理选项: 导出文献|

评论(0 人)

facelist doodle 涂鸦板

Copyright;  © 新科学想法 2016-2017   浙公网安备 33010202000686号   ( 浙ICP备09035230号-1 )